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Bi-Cyclide and Flat-Ring Cyclide Coordinate Surfaces: 
Correction of Two Expressions 

By Philip W. Kuchel, Brian T. Bulliman, and Edward D. Fackerell 

Abstract. Bi-cyclide and flat-ring cyclide coordinates are three-dimensional rotational coordi- 
nate systems based on conformal transformations using the Jacobian elliptic function sn. We 
have checked the previously published formulae of these systems (P. Moon and D. E. Spencer, 
Field Theory Handbook, Springer-Verlag, Berlin, 1971). In both cases the expression for the 
rotation-cyclide surfaces was incorrect: thus we present rederivations. The expressions were 
verified with the symbolic-algebraic computation package MACSYMA. 

1. Introduction. Novel orthogonal coordinate systems in two dimensions can be 
generated by conformal transformations using analytic functions of complex varia- 
bles; three-dimensional systems follow by rotation about either the real or the 
imaginary axes [8], [9]. Our interest in these systems is related to the calculation of 
the magnetic potential in and around nonspherical objects introduced into a uniform 
magnetic field; of particular interest are the biconcave-disc shapes of some red blood 
cells [3]. Among the analytic functions that yield coordinate curves that are similar 
to the cross section of biconcave discs is the Jacobian elliptic function z = x + iy = 
a sn(w, k) [6], [7], where a is real and the complex numbers w = /A + iv and k are 
the argument and modulus, respectively [1]. Separation of the real and imaginary 
parts of the elliptic function yields two coordinate-transformation equations, in x 
and y [6]-[9]: 

(1.1) x= = -snidnv', 

(1.2) y= - cnf dnItsnv'cnP', 

(1.3) A = 1 - dn isn v, 

(1.4) 0 < O K, 0 < P O <K', 

where K and K' are the definite elliptic integrals of the first kind with respect to k 
and its complement k', respectively [2], [5]; and the prime on P' specifies that k' is 
used in the elliptic function. The series of coordinate curves shown in Figure 1.1 
were drawn for three different values of k in order to emphasize the effects of 
changes in k on the concavity of the P = constant curves. Moon and Spencer have 
already presented similar curves, but only for k2 = 0.5 [6]-[9]. 
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FIGURE 1.1 

Orthogonal closed-curve coordinate system described by (1.1)-(1.4). The following values of 
real a and k2 were used: A, 30, 0.1; B, 30, 0.5; C, 30, 0.9. K and K' were calculated by 

computer using the hypergeometric series expression [2, p. 298] and sn was evaluated using the 
series expression [5, p. 13] programmed in BASIC. The scale-values of g and v are fractions of 

K and K', respectively. The curves were plotted using a Hewlett-Packard Series 9000 model 
220 computer and a 7475A plotter. 

When the maps of Figure 1.1 are rotated about the x-axis, we obtain an 
orthogonal family of surfaces [6], [7]. The Cartesian transformations are given in 
terms of the bi-cyclide coordinates (j, v, 4); 

(1.5) x= A cnudnusnv'cnv'cosd, 

(1.6) aY= a dn , sn v' cn v' sin 

a 
(1.7) z = - sn dn v', A 

(1.8) 0 < K, < v < K', O < 4 < 2,r, A as in (1.3). 

Expressions for the three families of coordinate surfaces (bi-cyclides, p = constant; 
rotation cyclides, v = constant; meridional half-planes, 4 = constant) are obtained 
by elimination of two of the three bi-cyclide variables from (1.5) to (1.7). 



610 -- PHILIP W. KUCHEL, BRIAN T BULLIMAN. AND EDWARD D. FACKERELL 

2. Derivation of Expressions for Coordinate Surfaces. The process of variable- 
elimination from (1.5) to (1.7) was as follows. Let, 

s =sn(p, k), c =cn(p, k), d =dn(p, k), 

S =sn(v, k'), C =cn(v, k'), D =dn(v, k'), k'2 = 1 -k 

r2 = 2 +Y2 + Z2. 

2.1. v = constant. The Cartesian coordinate surface for this condition was derived 
by eliminating 4 and p from (1.5) and (1.6); 4 was eliminated by squaring these 
equations followed by addition and using cos2 4 + sin2 4 = 1. Thus, from (1.3), 

(2.1) A = 1 - d2S2 = C2 + k22S2S2 

from (1.7), 

(2.2) Az/a = sD, 

and from (1.5) to (1.7), 

(2.3) A2(r2_ z 2)/a2 = c2d2S2C2. 

Squaring both sides of (2.2) and using D2 = 1 - k'2S2 = C2 + k2S2 gives 

A2z 2/a2 = s2(C2 + k2S2) = (1 - C2)C2 +(1 -d2)S2 = 1- c2C2 -d 2S 2. 

Adding this to (2.3) gives 

(2.4) A2r2/a2 = (1- c2C2)(1 - d2S2) = (1- c2C2)A, 

(Ar2/a2 = 1 - c2C2 = s2 + s2c2 = S2 + c2S2. 

We now have 

(2.5) A2 = (C2 + k2S2s2)2, 

(2.6) A2z2/a2 = D2S2 

(2.7) A2r2/a2 = S2C2 +(C4 + k2S4)s2 + k2S2C2s4, 

(2.8) A2r4/a4 = (S2 + C2S2)2. 

The right-hand sides are four linear combinations of the three quantities S4, S2, and 

s?, which can be eliminated to yield a linear homogeneous relation between the four 

left sides. Using the identity C4 - k2S4 = C2 - S2D2 and cancellation of A2 gives 

(2.9) 4 -| ?2S4)r2 + (C2 
I 

2) 2 + 1 = 0. 

To obtain the basic equation-form given by Moon and Spencer [6], [7], [9], we 
expand the coefficients of (2.9) in sn v' only: 

(2.10) (x 2 _ 2 + y 2? 2 _ p(x2 + y2)2 _Qz2R =_ 0 
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where 

a 2 [(I + k 2 )snv' P - 2 sn 2' + i 
(2.11) P = I 

k[ (1 - sn2 v'P) sn2v' 1' 
Q=P- (C2 - S2D2)2 a2 a 2 S2C2 D4+ 

S2C2D2 k2 k2 L D2 
(2.12) 

a2 [(k2 
- 

1)2 sn4v' + 2(k2 -1) sn2v' + (k2? 1) 
k2 L k2 - 1) snv+1 

(2.13) R --. 

Expression (2.10) and its coefficients differs from that given by Moon and Spencer 
[9, p. 124]. The expressions were, in fact, first derived here using the symbolic-alge- 
braic computation package MACSYMA [4]. Batch-mode procedure files used for 
computations relating to this and other sections are available from the authors. 

2.2. i = constant. The right-hand sides of (2.5) to (2.8) can be re-expressed as 
linear combinations of S4, S2, and S0 with coefficients depending on the lower-case 
letters. Elimination of these capitals yielded the coordinate surfaces defined by Eq. 

l I~~~~~~~~~~~~~~~~~~~~~~~I 

FIGURE 2.1 

Two-dimensional projection of a rotation cyclide coordinate surface of the bi-cyclide coordi- 
nate system. The parameter values used in Eqs. (2.10) to (2.13) for this computer-based 
drawing were a = 3.0, k2 = 0.1, v = 0.8K'. The curves were plotted using a Hewlett-Packard 
Think Jet printer from a screen dump from the computer mentioned in the caption of Figure 
1.1. 
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(2.10) with the following coefficients: 

(2.14) P 2 [k2 cn4 + dn 4 ] 

(2.15) Q = k2 
2 sn2u + 2 ] 

(2.16) R a4 

These expressions, after some rearrangement, are the same as Moon and Spencer's 
[9, p. 124]. 

2.3. A = constant. This coordinate surface is simply the half-plane given by 
tan 4 = y/x [9]. 

2.4. Graphical Representation of Surfaces. Figure 2.1 is a two-dimensional projec- 
tion of a rotation cyclide obtained using computer graphics which relied on the 
expressions (2.10) to (2.13). 

3. Flat-Ring Cyclide Coordinates (p, v, 4). The Cartesian transformations for this 
coordinate system are [7], [8], 

(3.1) x = a sn dn v' cos, 

(3.2) y= snp dnv' sin+, 

(3.3) z= akcnhidnhsnv'cnv', 

where A and the ranges of the variables are as in (1.3) and (1.8). 
The equations of the coordinate surfaces were derived in the same way as the 

bi-cyclide cases, after noting that (2.8) still holds, although the roles of Z2 and 
r2 - Z2 are interchanged in the derivation. We confirmed the correctness of Moon 
and Spencer's expression [8, p. 127] for the flat ring-cyclides (p = constant). 
However, the formula for the rotation cyclides (v = constant) was shown to be 
wrong. The correct expressions for the coefficients in (2.10) are, 

(3.4) P = a [ (k - 1)2 sn4 V' + 2(k 2 - 1) sn2 v' +(k 2 + I (2.12), 

a 2[(I + k 2) sn4p' - 2 sn 2v' +1 
(3.5) Q = 1 (2.11), k2[ (1 - sn 2v,) sn 2v J 

(3.6) R a 2 

4. Discussion. That the earlier versions of the expressions for the coordinate 
surfaces, v constant, are incorrect can be demonstrated readily by choosing values 
of v and substituting the corresponding values of the relevant elliptic functions into 
them. Fortuitously, if k2 has the value 0.5 (as was used by Moon and Spencer [7], 
[8]), then, for a wide range of v and a values the previous 'equality' is satisfied to 
within < 0.Ola. However, if k2 0 0.5, a much larger error can appear with the 
previously published equations; this is not the case with our expressions. We are 
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uncertain whether a systematic error arose in the earlier derivations of the formulae; 
but we have excluded, by use of MACSYMA [4], the suggestion that k instead of k' 
was used in the expressions containing v. 
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